If I assume that K1 known variables b,d and K2 knows variables a,b,d, then I get
step 0: {(S0,Q0);(S0,Q2);(S0,Q3);(S1,Q1);(S2,Q0);(S2,Q2);(S2,Q3);(S3,Q0);(S3,Q2);(S3,Q3)}
step 1: {(S0,Q0);(S1,Q1);(S2,Q2);(S2,Q3)}
step 2: {(S0,Q0);(S1,Q1);(S2,Q2)}
step 3: {(S0,Q0);(S1,Q1)}
step 4: {}
Hence, the two structures are certainly not bisimilar. If something would have been left in the final relation, you would have to check whether for every initial state of K1, there is a bisimilar initial state of K2, and vice versa. Thus, you must have pairs (S1,*), (S2,*), (*,Q1), (*,Q2) in the final relation where * represents an initial state.
If I assume that both structures are defined on variables a, b, d, then the computation is as follows:
step 0: {(S0,Q0);(S0,Q2);(S1,Q1);(S2,Q0);(S2,Q2);(S3,Q0);(S3,Q2)}
step 1: {(S0,Q0);(S1,Q1)}
step 2: {}
Again, they are not bisimilar.