If you use Fϕ = A∃ ({q}, ¬q, q ′ ↔ q ∨ ϕ, FGq), you get some trouble. You may negate both sides to get G¬ϕ = ¬Fϕ = ¬A∃ ({q}, ¬q, q ′ ↔ q ∨ ϕ, FGq) = A∃ ({q}, ¬q, q ′ ↔ q ∨ ϕ, ¬FGq), but that gives you a deterministic Büchi automaton.
Why not converting G¬b to a co-Büchi automaton using G¬b = A∃ ({q}, q, q′ ↔ q & ¬b , FGq)? Then, the rest is easy:
FGa∧G¬b = FGa ∧ A∃ ({q}, q, q′ ↔ q & ¬b , FGq) = A∃ ({q}, q, q′ ↔ q & ¬b ,FGa∧FGq) = A∃ ({q}, q, q′ ↔ q & ¬b ,FG(a∧q))
Combin